
총 8,001개
-
파이버공학실험2_섬유 견뢰도2025.05.161. 섬유 견뢰도 섬유 견뢰도의 정의와 종류, 염료 종류에 따른 견뢰도 차이, 표준 회색색표 등에 대해 설명하고 있습니다. 일광, 땀, 세탁, 마찰, 기체 등 다양한 요인에 대한 섬유의 견뢰도를 다루고 있습니다. 2. 승화 견뢰도 실험 Reactive dye로 염색된 면직물과 Disperse dye로 염색된 PET 직물의 승화 견뢰도 실험을 수행하였습니다. 실험 방법과 결과, 그리고 두 염료의 견뢰도 차이에 대해 설명하고 있습니다. 3. 마찰 견뢰도 실험 Vat dye로 염색된 데님 직물의 건조 및 습윤 상태에서의 마찰 견뢰도 실험...2025.05.16
-
Perovskite(페로브스카이트) Solar Cell의 기술 동향2025.05.161. Perovskite Solar cell의 원리와 구조 Perovskite는 ABX3 화학식을 갖는 결정구조로, FCC와 BCC가 혼합된 결정구조를 가지고 있다. A는 유기 양이온, B는 Pb or Sn과 같은 금속 양이온, X는 I와 같은 할로겐 음이온으로 구성된다. Perovskite Solar cell(PSC)은 이러한 페로브스카이트 결정 구조의 유무기 혼합 재료를 광활성층으로 이용하는 차세대 태양전지이다. Perovskite 박막 형성을 위해 용액 공정 또는 thermal evaporation을 사용하며, 100℃~150...2025.05.16
-
[예비+결과보고서]계측장비 및 교류전원의 접지상태의 측정방법설계2025.05.161. DMM과 오실로스코프의 차이점 실험을 통해 DMM과 오실로스코프의 차이점을 알 수 있었다. DMM은 실효치를 나타내고 오실로스코프는 Vpp, Vmax, Vrms 등 다양한 값들을 볼 수 있어 전압값을 측정하는데는 오실로스코프가 더 좋은 것으로 나타났다. 또한 주파수가 높아짐에 따라 DMM의 측정값이 줄어드는 반면 오실로스코프는 주파수에 상관없이 일정한 전압을 출력하는 것을 확인할 수 있었다. 2. Invert 기능의 이해 4.4~4.5 실험에서 Invert 기능을 통해 CH1과 CH2의 파형을 더하거나 뺄 수 있었다. 이를 통...2025.05.16
-
디지털 회로 실험 및 설계 - 부울대수와 카르노맵, RS Flip Flop 실험 22025.05.161. 부울대수와 카르노맵 실험 1에서는 다음 회로를 시뮬레이션하고 진리표를 완성하였으며, 카르노 맵을 이용하여 각각의 논리식을 구하였습니다. 실험 결과는 이론값과 대체적으로 유사하게 나왔으며, 논리레벨 H 단계는 4.4V 정도로 충분히 잘 나왔고, 논리레벨 L 단계에서도 0.xxxV 정도로 거의 흡사한 결과를 보였습니다. 2. RS Flip-Flop 실험 3에서는 NOR 게이트, NAND 게이트, 그리고 클럭 신호를 이용한 RS Flip-Flop 회로를 각각 시뮬레이션하고 진리표를 작성하였습니다. 실험 결과 역시 이론값과 대체적으로...2025.05.16
-
디지털 회로 실험 및 설계 - 부울대수와 카르노맵, RS Flip Flop 실험 12025.05.161. 부울 대수 부울 대수(Boolean Algebra)는 영국의 수학자 조지 부울이 19세기 중반에 고안한 논리 수학입니다. 부울 대수는 AND, OR, NOT 논리를 이용하여 논리식을 표현하며, 논리식의 각 변수는 0과 1의 값(논리 레벨)을 가지고 논리 연산이 가능합니다. 부울 대수의 기본 법칙에는 교환법칙, 결합법칙, 분배법칙이 있으며, 부울 정리에는 OR 논리, AND 논리, NOT 논리가 포함됩니다. 2. 카르노 맵 논리식을 간소화할 때는 카르노 맵을 주로 활용합니다. 카르노 맵은 변수의 개수에 따라 작성되며, 2변수 또...2025.05.16
-
디지털 회로 실험 및 설계 - 기본 논리 게이트(Gate) 및 TTL, CMOS I.F 실험 22025.05.161. 디지털 회로 실험 및 설계 이 보고서는 디지털 회로 실험 및 설계 과정에서 수행한 기본 논리 게이트(Gate) 및 TTL, CMOS I/F 실험에 대한 내용을 다루고 있습니다. 실험에서는 전압 레벨 측정, OR + Inverter 진리표 작성, AND-OR-NOT 게이트를 이용한 XOR 설계, CMOS와 TTL 인터페이스 등을 다루었으며, 이론값과 실험 결과를 비교 분석하였습니다. 오차 분석에서는 전류 측정의 어려움, 점퍼선의 저항, 브래드 보드의 불확실성 등이 원인으로 지적되었습니다. 1. 디지털 회로 실험 및 설계 디지털 ...2025.05.16
-
디지털 회로 실험 및 설계 - NE555 Timer 발진회로 응용 실험 22025.05.161. NE555 Timer 발진회로 NE555 Timer 발진회로는 디지털회로 실험 및 설계에서 중요한 역할을 합니다. 이 실험에서는 NE555 Timer 발진회로의 동작 원리와 특성을 이해하고, 다양한 저항 값 조합에 따른 출력 주파수와 듀티비를 측정하였습니다. 실험 결과 분석을 통해 전류 측정의 불확실성, 점퍼선의 저항, 브래드 보드의 상태 등이 오차 발생의 주요 원인임을 확인하였습니다. 1. NE555 Timer 발진회로 NE555 Timer는 매우 유용한 IC로, 다양한 발진회로를 구현할 수 있습니다. 이 회로는 간단한 구조...2025.05.16
-
디지털 회로 실험 및 설계 - NE555 Timer 발진회로 응용 실험 12025.05.161. NE555 타이머 IC NE555는 타이머, 지연, 펄스 생성 및 발진 역할을 하는 IC칩입니다. 내부 회로는 전압 분배기, 임계값 비교기, 트리거 비교기, 플립플롭, 출력, 방전 회로로 구성되어 있습니다. NE555는 불안정 모드(발진기), 단안정 모드, 쌍안정 모드 등 다양한 모드로 동작할 수 있습니다. 2. NE555 불안정 모드(발진 회로) NE555의 불안정 모드는 전압이 R1, R2를 통해 커패시터 C로 들어오면서 C가 충전되고, 2핀(TRIG)과 6핀(THR)의 비교기 출력이 RS 플립플롭의 R, S에 들어가 출력...2025.05.16
-
디지털 회로 실험 및 설계 - Multiplexer, DeMultiplexer 실험, JK Flip Flop 순차회로 실험 22025.05.161. Multiplexer (MUX) 4-to-1 MUX를 구성하고, S1과 S0의 입력신호에 따른 출력 Y를 실험한 결과, 이론값대로 잘 나왔으며 전압 레벨도 High는 4.36V, Low는 0.16V로 잘 측정되었다. 이를 통해 여러 입력 데이터 중에서 하나를 선택하는 조합 논리회로인 MUX를 잘 활용한 실험 결과였다. 2. Demultiplexer (DEMUX) 1-to-4 DEMUX를 구성하고, S1과 S0, Y의 입력상태에 따라 출력 D0~D3를 실험한 결과, 이론값대로 잘 나왔으며 전압 레벨도 High는 4.45V, Lo...2025.05.16
-
디지털 회로 실험 및 설계 - Multiplexer, DeMultiplexer 실험, JK Flip Flop 순차회로 실험2025.05.161. 멀티플렉서 멀티플렉서(MUX)는 여러 입력 데이터 중에서 하나를 선택하는 조합 논리회로입니다. 선택 신호(S1, S2)에 따라 데이터 D0 ~ D3 중에서 하나가 출력 X에 나타납니다. 멀티플렉서가 올바르게 동작하려면 선택 신호와 함께 데이터를 AND 게이트에 입력해야 합니다. 2. 디멀티플렉서 디멀티플렉서(DEMUX)는 멀티플렉서와 반대로 여러 출력 단자 중에서 하나로 데이터를 내보내는 조합 논리회로입니다. 입력 데이터 Di은 선택 신호 S1, S2에 의해 선택된 단자로 출력됩니다. 3. 비동기 카운터 비동기 카운터는 클록 ...2025.05.16