PARTNER
검증된 파트너 제휴사 자료

새로운 초기치 선정 방법을 이용한 향상된 EM 알고리즘

한국학술짿에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논과 학술지 정보를 만나보세요.
11 페이짿
기타파일
최초등록일 2025.03.01 최종젿작일 2003.08
11P 미보기
새로운 초기치 선정 방법을 이용한 향상된 EM 알고리즘
  • 미보기

    서정뵖

    · 발행기관 : 한국지능시스템학회
    · 수록지 정보 : 한국지능시스템학회 논지 / 13권 / 4호 / 416 ~ 426페이짿
    · 저자명 : 김성수, 강지혜

    초록

    본 논은 시스템 공학의 인식에 관련된 여러 분야에서 널리 쓰이는 클러스터링 기법인 Expectation-Maximization의 초기값 설정문제에 관하여 새로운 방법을 제안한다. 기존의 임의로 지정하는 랜덤한 초기치 선정 문제점을 지적하고, 새로이 제안하는 균등 영역 분할과 분할 된 데이터의 통계적 특성을 이용한 초기치 설정 방법을 사용한 새로운 EM 알고리즘을 제안한다. 일반적으로 EM에서 초기값 설정 방법으로 랜덤한 설정 방식의 약점을 보완하기 위하여 K-means 방법을 많이 사용하고 있다. 하지만, K-means 초기치 설정 방법도 근본적인 문제는 해결하지 못하고 있다. 이러한 문제의 하나의 해결방안으로 논이 제안한 균등 분할 및 통계적 특성을 이용한 초기치 선정의 방법을 EM 알고리즘에 적용하였다. 제안된 방법은 기존보다 EM 알고리즘의 특성을 극대화하는 방향으로 더 좋은 결과를 가져온다. 본 논에서 제안된 알고리즘의 우수성을 제안한 초기치 선정 방법을 적용한 EM과 기존 EM의 시뮬레이션 결과를 비교 분석하여 그 우수성을 제시하였다.

    참고자료

    · 없음
  • 자주묻는질의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객비바카지노 Viva의 저작권침해 신고비바카지노 Viva를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자왿 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료왿 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학껓, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국지능시스템학회 논지”의 다른 논도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래왿 같이 작업을 도왿드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 06월 09일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:19 오전