PARTNER
๊ฒ€์ฆ๋œ ํŒŒํŠธ๋„ˆ ์ œํœด์‚ฌ ์ž๋ฃŒ

An Analysis on Regional Differences in the Food Consumption Patterns of Chinese Urban Households

ํ•œ๊ตญํ•™์ˆ ์งฟ’์—์„œ ์ œ๊ณตํ•˜๋Š” ๊ตญ๋‚ด ์ตœ๊ณ  ์ˆ˜์ค€์˜ ํ•™์ˆ  ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ๋…ผ๋ๅฉ๊ณผ ํ•™์ˆ ์ง€ ์ •๋ณด๋ฅผ ๋งŒ๋‚˜๋ณด์„ธ์š”.
25 ํŽ˜์ด์งฟ’
๊ธฐํƒ€ํŒŒ์ผ
์ตœ์ดˆ๋“ฑ๋ก์ผ 2025.03.18 ์ตœ์ข…์ ฟ’์ž‘์ผ 2012.02
25P ๋ฏธ๋้ฉ๋ณด๊ธฐ
An Analysis on Regional Differences in the Food Consumption Patterns of Chinese Urban Households
  • ๋ฏธ๋้ฉ๋ณด๊ธฐ

    ์„œ์่ง์ •๋ต–

    ยท ๋ฐœํ–‰๊ธฐ๊ด€ : ํ•œ๊ตญ๊ฒฝ์ œํ†ต์ƒํ•™ํšŒ
    ยท ์ˆ˜๋ก์ง€ ์ •๋ณด : ๊ฒฝ์ œ์—ฐ๊ตฌ / 30๊ถŒ / 1ํ˜ธ / 87 ~ 111ํŽ˜์ด์งฟ’
    ยท ์ €์ž๋ช… : ์ด์‹œ์˜, ๋ฐ•๋ช…์ˆ™

    ์ดˆ๋ก

    This study addresses the difference of the regional food consumption patterns in the Chinese urban households using the panel data 'per capita annual consumption expenditure of urban households by region(2004-2009)'. The methodology of the paper is cluster analysis and regression model with constant slope coefficients and intercept that varies over the regions and time by panel data, which combine time series and cross-sectional data. The results are as follows;It is stated in this paper that 31 regions of China through 6 years are divided into five clusters having different food consumption patterns respectively, following to the observation of variations in pseudo-F and CCC as the number of clusters grows. In addition, it is detected that there exists a nearly consistent tendency that food consumption pattern of each regions varies as time progresses.
    This present study analyzes on the differences of sectoral food consumption patterns by clusters using the linear regression models with constant slope coefficients and intercept that varies over the regions and time with panel data. In addition, Lagrange multipliers of Breusch and Pagan on the models of 5 food sectors give us strong evidence for the varying-intercept regression models, and the values of Hausman statistic suggest that the error components model is more appropriate than the dummy variable model to analyze the regional consumption patterns of 5 food sectors in China. And, this paper shows that income elasticities of some clusters distinctly differ from the others in several food sectors.
    In conclusion, the research of this paper presents some logical reasons why it is very desirable that provinces in China are separated to some groups, so that the systematic grouping of food consumption patterns will improve the accuracy of the analysis in demand for food. Besides, these results of the study may suggest several points of interest for China-related food policy makers, planners and traders.

    ์ฐธ๊ณ ์ž๋ฃŒ

    ยท ์—†์Œ
  • ์ž์ฃผ๋ฌป๋Š”์งˆ๋ๅฉ์˜ ๋‹ต๋ณ€์„ ํ™•์ธํ•ด ์ฃผ์„ธ์š”

    ํ•ดํ”ผ์บ ํผ์Šค FAQ ๋”๋ณด๊ธฐ

    ๊ผญ ์•Œ์•„์ฃผ์„ธ์š”

    • ์ž๋ฃŒ์˜ ์ •๋ณด ๋ฐ ๋‚ด์šฉ์˜ ์ง„์‹ค์„ฑ์— ๋Œ€ํ•˜์—ฌ ํ•ดํ”ผ์บ ํผ์Šค๋Š” ๋ณด์ฆํ•˜์ง€ ์•Š์œผ๋ฉฐ, ํ•ด๋‹น ์ •๋ณด ๋ฐ ๊ฒŒ์‹œ๋ฌผ ์ €์ž‘๊ถŒ๊ณผ ๊ธฐํƒ€ ๋ฒ•์  ์ฑ…์ž„์€ ์ž๋ฃŒ ๋“ฑ๋ก์ž์—๊ฒŒ ์žˆ์Šต๋‹ˆ๋‹ค.
      ์ž๋ฃŒ ๋ฐ ๊ฒŒ์‹œ๋ฌผ ๋‚ด์šฉ์˜ ๋ถˆ๋ฒ•์  ์ด์šฉ, ๋ฌด๋‹จ ์ „์žฌโˆ™๋ฐฐํฌ๋Š” ๊ธˆ์ง€๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.
      ์ €์ž‘๊ถŒ์นจํ•ด, ๋ช…์˜ˆํ›ผ์† ๋“ฑ ๋ถ„์Ÿ ์š”์†Œ ๋ฐœ๊ฒฌ ์‹œ ๊ณ ๊ฐ๋น„๋ฐ”์นด์ง€๋…ธ Viva์˜ ์ €์ž‘๊ถŒ์นจํ•ด ์‹ ๊ณ ๋น„๋ฐ”์นด์ง€๋…ธ Viva๋ฅผ ์ด์šฉํ•ด ์ฃผ์‹œ๊ธฐ ๋ฐ”๋ž๋‹ˆ๋‹ค.
    • ํ•ดํ”ผ์บ ํผ์Šค๋Š” ๊ตฌ๋งค์ž์™ฟ’ ํŒ๋งค์ž ๋ชจ๋‘๊ฐ€ ๋งŒ์กฑํ•˜๋Š” ์„œ๋น„์Šค๊ฐ€ ๋˜๋„๋ก ๋…ธ๋ ฅํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์•„๋ž˜์˜ 4๊ฐ€์ง€ ์ž๋ฃŒํ™˜๋ถˆ ์กฐ๊ฑด์„ ๊ผญ ํ™•์ธํ•ด์ฃผ์‹œ๊ธฐ ๋ฐ”๋ž๋‹ˆ๋‹ค.
      ํŒŒ์ผ์˜ค๋ฅ˜ ์ค‘๋ณต์ž๋ฃŒ ์ €์ž‘๊ถŒ ์—†์Œ ์„ค๋ช…๊ณผ ์‹ค์ œ ๋‚ด์šฉ ๋ถˆ์ผ์น˜
      ํŒŒ์ผ์˜ ๋‹ค์šด๋กœ๋“œ๊ฐ€ ์ œ๋Œ€๋กœ ๋˜์ง€ ์•Š๊ฑฐ๋‚˜ ํŒŒ์ผํ˜•์‹์— ๋งž๋Š” ํ”„๋กœ๊ทธ๋žจ์œผ๋กœ ์ •์ƒ ์ž‘๋™ํ•˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ ๋‹ค๋ฅธ ์ž๋ฃŒ์™ฟ’ 70% ์ด์ƒ ๋‚ด์šฉ์ด ์ผ์น˜ํ•˜๋Š” ๊ฒฝ์šฐ (์ค‘๋ณต์ž„์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋Š” ๊ทผ๊ฑฐ ํ•„์š”ํ•จ) ์ธํ„ฐ๋„ท์˜ ๋‹ค๋ฅธ ์‚ฌ์ดํŠธ, ์—ฐ๊ตฌ๊ธฐ๊ด€, ํ•™๊ป“, ์„œ์  ๋“ฑ์˜ ์ž๋ฃŒ๋ฅผ ๋„์šฉํ•œ ๊ฒฝ์šฐ ์ž๋ฃŒ์˜ ์„ค๋ช…๊ณผ ์‹ค์ œ ์ž๋ฃŒ์˜ ๋‚ด์šฉ์ด ์ผ์น˜ํ•˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ

โ€œ๊ฒฝ์ œ์—ฐ๊ตฌโฟ’์˜ ๋‹ค๋ฅธ ๋…ผ๋ๅฉ๋„ ํ™•์ธํ•ด ๋ณด์„ธ์š”!

๋ฌธ์„œ ์ดˆ์•ˆ์„ ์ƒ์„ฑํ•ด์ฃผ๋Š” EasyAI
์•ˆ๋…•ํ•˜์„ธ์š”. ํ•ดํ”ผ์บ ํผ์Šค์˜ ๋ฐฉ๋Œ€ํ•œ ์ž๋ฃŒ ์ค‘์—์„œ ์„ ๋ณ„ํ•˜์—ฌ ๋‹น์‹ ๋งŒ์˜ ์ดˆ์•ˆ์„ ๋งŒ๋“ค์–ด์ฃผ๋Š” EasyAI ์ž…๋‹ˆ๋‹ค.
์ €๋Š” ์•„๋ž˜์™ฟ’ ๊ฐ™์ด ์ž‘์—…์„ ๋„์™ฟ’๋“œ๋ฆฝ๋‹ˆ๋‹ค.
- ์ฃผ์ œ๋งŒ ์ž…๋ ฅํ•˜๋ฉด ๋ชฉ์ฐจ๋ถ€ํ„ฐ ๋ณธ๋ฌธ๋‚ด์šฉ๊นŒ์ง€ ์ž๋™ ์ƒ์„ฑํ•ด ๋“œ๋ฆฝ๋‹ˆ๋‹ค.
- ์žฅ๋ฌธ์˜ ์ฝ˜ํ…์ธ ๋ฅผ ์‰ฝ๊ณ  ๋น ๋ฅด๊ฒŒ ์ž‘์„ฑํ•ด ๋“œ๋ฆฝ๋‹ˆ๋‹ค.
- ์Šคํ† ์–ด์—์„œ ๋ฌด๋ฃŒ ์บ์‹œ๋ฅผ ๊ณ„์ •๋ณ„๋กœ 1ํšŒ ๋ฐœ๊ธ‰ ๋ฐ›์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ง€๊ธˆ ๋ฐ”๋กœ ์ฒดํ—˜ํ•ด ๋ณด์„ธ์š”!
์ด๋Ÿฐ ์ฃผ์ œ๋“ค์„ ์ž…๋ ฅํ•ด ๋ณด์„ธ์š”.
- ์œ ์•„์—๊ฒŒ ์ ํ•ฉํ•œ ๋ฌธํ•™์ž‘ํ’ˆ์˜ ๊ธฐ์ค€๊ณผ ํŠน์„ฑ
- ํ•œ๊ตญ์ธ์˜ ๊ฐ€์น˜๊ด€ ์ค‘์—์„œ ์ •์‹ ์  ๊ฐ€์น˜๊ด€์„ ์ด๋ฃจ๋Š” ๊ฒƒ๋“ค์„ ๋ฌธํ™”์  ๋ฌธ๋ฒ•์œผ๋กœ ์ •๋ฆฌํ•˜๊ณ , ํ˜„๋Œ€ํ•œ๊ตญ์‚ฌํšŒ์—์„œ ์ผ์–ด๋‚˜๋Š” ์‚ฌ๊ฑด๊ณผ ์‚ฌ๊ณ ๋ฅผ ๋น„๊ตํ•˜์—ฌ ์ž์‹ ์˜ ์˜๊ฒฌ์œผ๋กœ ๊ธฐ์ˆ ํ•˜์„ธ์š”
- ์ž‘๋ณ„์ธ์‚ฌ ๋…ํ›„๊ฐ
ํ•ด์บ  AI ์ฑ—๋ด‡๊ณผ ๋Œ€ํ™”ํ•˜๊ธฐ
์ฑ—๋ด‡์œผ๋กœ ๊ฐ„ํŽธํ•˜๊ฒŒ ์ƒ๋‹ดํ•ด๋ณด์„ธ์š”.
2025๋…„ 06์›” 08์ผ ์ผ์š”์ผ
AI ์ฑ—๋ด‡
์•ˆ๋…•ํ•˜์„ธ์š”. ํ•ดํ”ผ์บ ํผ์Šค AI ์ฑ—๋ด‡์ž…๋‹ˆ๋‹ค. ๋ฌด์—‡์ด ๊ถ๊ธˆํ•˜์‹ ๊ฐ€์š”?
12:55 ์˜คํ›„