PARTNER
๊ฒ€์ฆ๋œ ํŒŒํŠธ๋„ˆ ์ œํœด์‚ฌ ์ž๋ฃŒ

R2์™ฟ’ ์–ดํ…์…˜์„ ์ ์šฉํ•œ ์œ ๋„ท ๊ธฐ๋ฐ˜์˜ ์˜์ƒ ๊ฐ„ ๋ณ€ํ™˜์— ๊ด€ํ•œ ์—ฐ๊ตฌ (Image-to-Image Translation Based on U-Net with R2 and Attention)

8 ํŽ˜์ด์งฟ’
๊ธฐํƒ€ํŒŒ์ผ
์ตœ์ดˆ๋“ฑ๋ก์ผ 2025.03.27 ์ตœ์ข…์ ฟ’์ž‘์ผ 2020.08
8P ๋ฏธ๋้ฉ๋ณด๊ธฐ
R2์™ฟ’ ์–ดํ…์…˜์„ ์ ์šฉํ•œ ์œ ๋„ท ๊ธฐ๋ฐ˜์˜ ์˜์ƒ ๊ฐ„ ๋ณ€ํ™˜์— ๊ด€ํ•œ ์—ฐ๊ตฌ
  • ๋ฏธ๋้ฉ๋ณด๊ธฐ

    ์„œ์่ง์ •๋ต–

    ยท ๋ฐœํ–‰๊ธฐ๊ด€ : ํ•œ๊ตญ์ธํ„ฐ๋„ท์ •๋ณดํ•™ํšŒ
    ยท ์ˆ˜๋ก์ง€ ์ •๋ณด : ์ธํ„ฐ๋„ท์ •๋ณดํ•™ํšŒ๋…ผ๋ๅฉ์ง€ / 21๊ถŒ / 4ํ˜ธ / 9 ~ 16ํŽ˜์ด์งฟ’
    ยท ์ €์ž๋ช… : ์ž„์†Œํ˜„, ์ „์ค€์ฒ 

    ์ดˆ๋ก

    ์˜์ƒ ์ฒ˜๋ฆฌ ๋ฐ ์ปดํ“จํ„ฐ ๋น„์ „ ๋ถ„์•ผ์—์„œ ํ•˜๋‚˜์˜ ์˜์ƒ์„ ํ†ตํ•ด ๋‹ค๋ฅธ ์˜์ƒ์œผ๋กœ ์žฌ๊ตฌ์„ฑํ•˜๊ฑฐ๋‚˜ ์ƒˆ๋กœ์šด ์˜์ƒ์„ ์ƒ์„ฑํ•˜๋Š” ๋ฌธ์ œ๋Š” ํ•˜๋“œ์›จ์–ด์˜๋ฐœ์ „์— ๋”ฐ๋ผ ๊พธ์ค€ํžˆ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ปดํ“จํ„ฐ๋ฅผ ํ†ตํ•ด ์ƒ์„ฑํ•œ ์ด๋ฏธ์ง€๋ฅผ ์‚ฌ๋žŒ์˜ ๋ˆˆ์œผ๋กœ ๋ฐ”๋ผ๋ดค์„ ๋•Œ ์ž์—ฐ์Šค๋Ÿฝ์ง€ ์•Š๋‹ค๋Š” ๋ฌธ์ œ ๋˜ํ•œ ๊ณ„์†ํ•ด์„œ ๋Œ€๋‘๋˜๊ณ  ์žˆ๋‹ค. ์ตœ๊ทผ ๋”ฅ๋Ÿฌ๋‹ ๋ถ„์•ผ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋จ์— ๋”ฐ๋ผ ์ด๋ฅผ ํ™œ์šฉํ•œ ์˜์ƒ ์ƒ์„ฑ ๋ฐ ๊ฐœ์„  ๋ฌธ์ œ ๋˜ํ•œ ํ™œ๋ฐœํžˆ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ์œผ๋ฉฐ ๊ทธ ์ค‘์—์„œ๋„ ์ ๋Œ€์  ์ƒ์„ฑ ์‹ ๊ฒฝ๋ง(Generative Adversarial Network)์ด๋ผ๋Š” ๋„คํŠธ์›Œํฌ๊ฐ€ ์˜์ƒ ์ƒ์„ฑ ๋ถ„์•ผ์— ์žˆ์–ด ์ข‹์€๊ฒฐ๊ณผ๋ฅผ ๋ณด์ด๊ณ  ์žˆ๋‹ค. ์ ๋Œ€์  ์ƒ์„ฑ ์‹ ๊ฒฝ๋ง์ด ์ œ์•ˆ๋œ ์ดํ›„ ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ๋‹ค์–‘ํ•œ ๋„คํŠธ์›Œํฌ๊ฐ€ ์ œ์‹œ๋จ์— ๋”ฐ๋ผ ์˜์ƒ ์ƒ์„ฑ ๋ถ„์•ผ์—์„œ๋” ์ž์—ฐ์Šค๋Ÿฌ์šด ์˜์ƒ์„ ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•ด์กŒ๋‹ค. ๊ทธ ์ค‘ pix2pix์€ ์กฐ๊ฑด ์ ๋Œ€์  ์ƒ์„ฑ ์‹ ๊ฒฝ๋ง ๋ชจ๋ธ๋กœ ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ์…‹์—์„œ๋„ ์ข‹์€ ์„ฑ๋Šฅ์„๋ณด์ด๋Š” ๋ฒ”์šฉ์ ์ธ ๋„คํŠธ์›Œํฌ์ด๋‹ค. pix2pix๋Š” U-Net์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋‘๊ณ  ์žˆ์œผ๋‚˜ U-Net์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ๋„คํŠธ์›Œํฌ ์ค‘์—์„œ๋Š” ๋” ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์ด๋Š” ๋„คํŠธ์›Œํฌ๊ฐ€ ๋‹ค์ˆ˜ ์กด์žฌํ•œ๋‹ค. ๋•Œ๋ฌธ์— ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” pix2pix์˜ U-Net์— ๋‹ค์–‘ํ•œ ๋„คํŠธ์›Œํฌ๋ฅผ ์ ์šฉํ•ด ์˜์ƒ์„ ์ƒ์„ฑํ•˜๊ณ  ๊ทธ ๊ฒฐ๊ณผ๋ฅผ ์ƒํ˜ธ๋น„๊ต ํ‰๊ฐ€ํ•œ๋‹ค. ๊ฐ ๋„คํŠธ์›Œํฌ๋ฅผ ํ†ตํ•ด ์ƒ์„ฑ๋œ ์˜์ƒ์„ ํ†ตํ•ด ๊ธฐ์กด์˜ U-Net์„ ์‚ฌ์šฉํ•œ pix2pix ๋ชจ๋ธ๋ณด๋‹ค ์–ดํ…์…˜, R2, ์–ดํ…์…˜-R2 ๋„คํŠธ์›Œํฌ๋ฅผ ์ ์šฉํ•œ pix2pix ๋ชจ๋ธ์ด ๋” ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์ด๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜๊ณ  ๊ทธ ์ค‘ ๊ฐ€์žฅ ์„ฑ๋Šฅ์ด ๋›ฐ์–ด๋‚œ ๋„คํŠธ์›Œํฌ์˜ ํ•œ๊ณ„์ ์„ ํ–ฅํ›„ ์—ฐ๊ตฌ๋กœ ์ œ์‹œํ•œ๋‹ค.

    ์˜์–ด์ดˆ๋ก

    In the Image processing and computer vision, the problem of reconstructing from one image to another or generating a new image has been steadily drawing attention as hardware advances. However, the problem of computer-generated images also continues to emerge when viewed with human eyes because it is not natural. Due to the recent active research in deep learning, image generating and improvement problem using it are also actively being studied, and among them, the network called Generative Adversarial Network(GAN) is doing well in the image generating. Various models of GAN have been presented since the proposed GAN, allowing for the generation of more natural images compared to the results of research in the image generating. Among them, pix2pix is a conditional GAN model, which is a general-purpose network that shows good performance in various datasets. pix2pix is based on U-Net, but there are many networks that show better performance among U-Net based networks. Therefore, in this study, images are generated by applying various networks to U-Net of pix2pix, and the results are compared and evaluated. The images generated through each network confirm that the pix2pix model with Attention, R2, and Attention-R2 networks shows better performance than the existing pix2pix model using U-Net, and check the limitations of the most powerful network. It is suggested as a future study

    ์ฐธ๊ณ ์ž๋ฃŒ

    ยท ์—†์Œ
  • ์ž์ฃผ๋ฌป๋Š”์งˆ๋ๅฉ์˜ ๋‹ต๋ณ€์„ ํ™•์ธํ•ด ์ฃผ์„ธ์š”

    ํ•ดํ”ผ์บ ํผ์Šค FAQ ๋”๋ณด๊ธฐ

    ๊ผญ ์•Œ์•„์ฃผ์„ธ์š”

    • ์ž๋ฃŒ์˜ ์ •๋ณด ๋ฐ ๋‚ด์šฉ์˜ ์ง„์‹ค์„ฑ์— ๋Œ€ํ•˜์—ฌ ํ•ดํ”ผ์บ ํผ์Šค๋Š” ๋ณด์ฆํ•˜์ง€ ์•Š์œผ๋ฉฐ, ํ•ด๋‹น ์ •๋ณด ๋ฐ ๊ฒŒ์‹œ๋ฌผ ์ €์ž‘๊ถŒ๊ณผ ๊ธฐํƒ€ ๋ฒ•์  ์ฑ…์ž„์€ ์ž๋ฃŒ ๋“ฑ๋ก์ž์—๊ฒŒ ์žˆ์Šต๋‹ˆ๋‹ค.
      ์ž๋ฃŒ ๋ฐ ๊ฒŒ์‹œ๋ฌผ ๋‚ด์šฉ์˜ ๋ถˆ๋ฒ•์  ์ด์šฉ, ๋ฌด๋‹จ ์ „์žฌโˆ™๋ฐฐํฌ๋Š” ๊ธˆ์ง€๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.
      ์ €์ž‘๊ถŒ์นจํ•ด, ๋ช…์˜ˆํ›ผ์† ๋“ฑ ๋ถ„์Ÿ ์š”์†Œ ๋ฐœ๊ฒฌ ์‹œ ๊ณ ๊ฐ๋น„๋ฐ”์นด์ง€๋…ธ Viva์˜ ์ €์ž‘๊ถŒ์นจํ•ด ์‹ ๊ณ ๋น„๋ฐ”์นด์ง€๋…ธ Viva๋ฅผ ์ด์šฉํ•ด ์ฃผ์‹œ๊ธฐ ๋ฐ”๋ž๋‹ˆ๋‹ค.
    • ํ•ดํ”ผ์บ ํผ์Šค๋Š” ๊ตฌ๋งค์ž์™ฟ’ ํŒ๋งค์ž ๋ชจ๋‘๊ฐ€ ๋งŒ์กฑํ•˜๋Š” ์„œ๋น„์Šค๊ฐ€ ๋˜๋„๋ก ๋…ธ๋ ฅํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์•„๋ž˜์˜ 4๊ฐ€์ง€ ์ž๋ฃŒํ™˜๋ถˆ ์กฐ๊ฑด์„ ๊ผญ ํ™•์ธํ•ด์ฃผ์‹œ๊ธฐ ๋ฐ”๋ž๋‹ˆ๋‹ค.
      ํŒŒ์ผ์˜ค๋ฅ˜ ์ค‘๋ณต์ž๋ฃŒ ์ €์ž‘๊ถŒ ์—†์Œ ์„ค๋ช…๊ณผ ์‹ค์ œ ๋‚ด์šฉ ๋ถˆ์ผ์น˜
      ํŒŒ์ผ์˜ ๋‹ค์šด๋กœ๋“œ๊ฐ€ ์ œ๋Œ€๋กœ ๋˜์ง€ ์•Š๊ฑฐ๋‚˜ ํŒŒ์ผํ˜•์‹์— ๋งž๋Š” ํ”„๋กœ๊ทธ๋žจ์œผ๋กœ ์ •์ƒ ์ž‘๋™ํ•˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ ๋‹ค๋ฅธ ์ž๋ฃŒ์™ฟ’ 70% ์ด์ƒ ๋‚ด์šฉ์ด ์ผ์น˜ํ•˜๋Š” ๊ฒฝ์šฐ (์ค‘๋ณต์ž„์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋Š” ๊ทผ๊ฑฐ ํ•„์š”ํ•จ) ์ธํ„ฐ๋„ท์˜ ๋‹ค๋ฅธ ์‚ฌ์ดํŠธ, ์—ฐ๊ตฌ๊ธฐ๊ด€, ํ•™๊ป“, ์„œ์  ๋“ฑ์˜ ์ž๋ฃŒ๋ฅผ ๋„์šฉํ•œ ๊ฒฝ์šฐ ์ž๋ฃŒ์˜ ์„ค๋ช…๊ณผ ์‹ค์ œ ์ž๋ฃŒ์˜ ๋‚ด์šฉ์ด ์ผ์น˜ํ•˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ

โ€œ์ธํ„ฐ๋„ท์ •๋ณดํ•™ํšŒ๋…ผ๋ๅฉ์ง€โ€์˜ ๋‹ค๋ฅธ ๋…ผ๋ๅฉ๋„ ํ™•์ธํ•ด ๋ณด์„ธ์š”!

๋ฌธ์„œ ์ดˆ์•ˆ์„ ์ƒ์„ฑํ•ด์ฃผ๋Š” EasyAI
์•ˆ๋…•ํ•˜์„ธ์š”. ํ•ดํ”ผ์บ ํผ์Šค์˜ ๋ฐฉ๋Œ€ํ•œ ์ž๋ฃŒ ์ค‘์—์„œ ์„ ๋ณ„ํ•˜์—ฌ ๋‹น์‹ ๋งŒ์˜ ์ดˆ์•ˆ์„ ๋งŒ๋“ค์–ด์ฃผ๋Š” EasyAI ์ž…๋‹ˆ๋‹ค.
์ €๋Š” ์•„๋ž˜์™ฟ’ ๊ฐ™์ด ์ž‘์—…์„ ๋„์™ฟ’๋“œ๋ฆฝ๋‹ˆ๋‹ค.
- ์ฃผ์ œ๋งŒ ์ž…๋ ฅํ•˜๋ฉด ๋ชฉ์ฐจ๋ถ€ํ„ฐ ๋ณธ๋ฌธ๋‚ด์šฉ๊นŒ์ง€ ์ž๋™ ์ƒ์„ฑํ•ด ๋“œ๋ฆฝ๋‹ˆ๋‹ค.
- ์žฅ๋ฌธ์˜ ์ฝ˜ํ…์ธ ๋ฅผ ์‰ฝ๊ณ  ๋น ๋ฅด๊ฒŒ ์ž‘์„ฑํ•ด ๋“œ๋ฆฝ๋‹ˆ๋‹ค.
- ์Šคํ† ์–ด์—์„œ ๋ฌด๋ฃŒ ์บ์‹œ๋ฅผ ๊ณ„์ •๋ณ„๋กœ 1ํšŒ ๋ฐœ๊ธ‰ ๋ฐ›์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ง€๊ธˆ ๋ฐ”๋กœ ์ฒดํ—˜ํ•ด ๋ณด์„ธ์š”!
์ด๋Ÿฐ ์ฃผ์ œ๋“ค์„ ์ž…๋ ฅํ•ด ๋ณด์„ธ์š”.
- ์œ ์•„์—๊ฒŒ ์ ํ•ฉํ•œ ๋ฌธํ•™์ž‘ํ’ˆ์˜ ๊ธฐ์ค€๊ณผ ํŠน์„ฑ
- ํ•œ๊ตญ์ธ์˜ ๊ฐ€์น˜๊ด€ ์ค‘์—์„œ ์ •์‹ ์  ๊ฐ€์น˜๊ด€์„ ์ด๋ฃจ๋Š” ๊ฒƒ๋“ค์„ ๋ฌธํ™”์  ๋ฌธ๋ฒ•์œผ๋กœ ์ •๋ฆฌํ•˜๊ณ , ํ˜„๋Œ€ํ•œ๊ตญ์‚ฌํšŒ์—์„œ ์ผ์–ด๋‚˜๋Š” ์‚ฌ๊ฑด๊ณผ ์‚ฌ๊ณ ๋ฅผ ๋น„๊ตํ•˜์—ฌ ์ž์‹ ์˜ ์˜๊ฒฌ์œผ๋กœ ๊ธฐ์ˆ ํ•˜์„ธ์š”
- ์ž‘๋ณ„์ธ์‚ฌ ๋…ํ›„๊ฐ
ํ•ด์บ  AI ์ฑ—๋ด‡๊ณผ ๋Œ€ํ™”ํ•˜๊ธฐ
์ฑ—๋ด‡์œผ๋กœ ๊ฐ„ํŽธํ•˜๊ฒŒ ์ƒ๋‹ดํ•ด๋ณด์„ธ์š”.
2025๋…„ 06์›” 27์ผ ๊ธˆ์š”์ผ
AI ์ฑ—๋ด‡
์•ˆ๋…•ํ•˜์„ธ์š”. ํ•ดํ”ผ์บ ํผ์Šค AI ์ฑ—๋ด‡์ž…๋‹ˆ๋‹ค. ๋ฌด์—‡์ด ๊ถ๊ธˆํ•˜์‹ ๊ฐ€์š”?
11:20 ์˜คํ›„