PARTNER
๊ฒ€์ฆ๋œ ํŒŒํŠธ๋„ˆ ์ œํœด์‚ฌ ์ž๋ฃŒ

๋‹ค๋็ช์ ํ•จ์ˆ˜๋ฅผ ์ด์šฉํ•œ PDM ๋ชจํ˜•์˜ ์œ ๋Ÿ‰ ๋ถ„์„ (Prediction of Stream Flow on Probability Distributed Model using Multi-objective Function)

10 ํŽ˜์ด์งฟ’
๊ธฐํƒ€ํŒŒ์ผ
์ตœ์ดˆ๋“ฑ๋ก์ผ 2025.04.08 ์ตœ์ข…์ ฟ’์ž‘์ผ 2009.10
10P ๋ฏธ๋้ฉ๋ณด๊ธฐ
๋‹ค๋็ช์ ํ•จ์ˆ˜๋ฅผ ์ด์šฉํ•œ PDM ๋ชจํ˜•์˜ ์œ ๋Ÿ‰ ๋ถ„์„
  • ๋ฏธ๋้ฉ๋ณด๊ธฐ

    ์„œ์่ง์ •๋ต–

    ยท ๋ฐœํ–‰๊ธฐ๊ด€ : ํ•œ๊ตญ๋ฐฉ์žฌํ•™ํšŒ
    ยท ์ˆ˜๋ก์ง€ ์ •๋ณด : ํ•œ๊ตญ๋ฐฉ์žฌํ•™ํšŒ๋…ผ๋ๅฉ์ง‘ / 9๊ถŒ / 5ํ˜ธ / 93 ~ 102ํŽ˜์ด์งฟ’
    ยท ์ €์ž๋ช… : ์•ˆ์ƒ์–ต, ์ดํšจ์ƒ, ์ „๋ฏผ์šฐ

    ์ดˆ๋ก

    ๋ณธ ์—ฐ๊ตฌ๋Š” ๋ฏธํ˜ธ์ฒœ ์œ ์—ญ์„ ๋Œ€์ƒ์œผ๋กœ ์œ ๋Ÿ‰๊ณก์„ ์˜ ์„ธ๋ถ€์ ์ธ ํŠน์„ฑ์„ ๊ณ ๋ คํ•œ ๋‹ค๋็ช์ ํ•จ์ˆ˜๋ฅผ ์ ์šฉํ•˜์—ฌ Probability Distribution Model(PDM) ๋ชจํ˜•์˜ ์œ ๋Ÿ‰๋ชจ์˜์„ฑ๋Šฅ์„ ๊ฒ€ํ† ํ•˜์˜€๋‹ค. PDM์€ ์œ ์—ญ์„ ํ•œ ๊ฐœ์˜ ๋‹จ์œ„๊ตฌ์—ญ์œผ๋กœ ๊ฐœ๋…ํ™”ํ•œ ์ง‘์ค‘ํ˜• ๊ฐ•์šฐ์œ ์ถœ๋ชจํ˜•์œผ๋กœ ์˜๊ตญ์˜ ์ง€์—ญํ™” ์—ฐ๊ตฌ ๋ฐ ํ™์ˆ˜๋Ÿ‰ ์‚ฐ์ •๋ฐฉ๋ฒ•์— ๋Œ€ํ‘œ์ ์œผ๋กœ ์ด์šฉ๋˜๊ณ  ์žˆ๋‹ค. PDM ๋ชจํ˜•์˜ 5๊ฐœ ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ Monte Carlo ๋ฐฉ๋ฒ•์— ๊ธฐ๋ฐ˜์„ ๋‘” ๋ถ„์„๋„๊ตฌ(MCAT, Monte Carlo Analysis Toolkit)๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์‚ฌํ›„๊ฒ€์ •๋ถ„ํฌ, ๊ฒ€์ •๊ทผ๊ฑฐ ๋ฐ ๋ฏผ๊ฐ๋„ ๋ถ„์„ ๋“ฑ์„ ์ˆ˜ํ–‰ํ•˜์˜€์œผ๋ฉฐ, ๋ชจํ˜•์˜ ๋งค๊ฐœ๋ณ€์ˆ˜ ์ค‘ cmax์™ฟ’ k(q)๋งŒ์ด ๋šœ๋ ทํ•œ ๊ฒ€์ • ๊ทผ๊ฑฐ๊ฐ€ ์žˆ๊ณ  ๋‚˜๋จธ์ง€ ๋ณ€์ˆ˜๋“ค์€ ๋™๋“ฑ์„ฑ์˜ ์˜ํ–ฅ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ, ์œ ๋Ÿ‰๊ณก์„ ์˜ ๊ณ ์œ ๋Ÿ‰ ๋ฐ ์ €์œ ๋Ÿ‰์˜ ํŠน์„ฑ์„ ๋งž์ถ˜ ๋ชฉ์ ํ•จ์ˆ˜์˜ Trade-off๋ฅผ ๊ณ ๋ คํ•œ ๋งค๊ฐœ๋ณ€์ˆ˜์˜ ํŒŒ๋ ˆํ†  ์ตœ์ ํ•ด๋ฅผ ์‚ฐ์ •ํ•œ ๊ฒฐ๊ณผ, ๋ชจ๋“  ๋ชฉ์ ์— ์ตœ๋Œ€ํ•œ ๋ถ€ํ•ฉํ•˜๋Š” ์œ ๋Ÿ‰ ์‚ฐ์ •์˜ ๊ฐ€๋Šฅ์„ฑ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๊ฒ€์ •(calibration)๊ธฐ๊ฐ„์—์„œ NSE*=0.035, FSB=0.161, FDBH= 0.809๋กœ ์•ˆ์ •์ ์ด๋ฉฐ ๋งŒ์กฑํ• ๋งŒํ•œ ๋ชจ์˜์„ฑ๋Šฅ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๊ณ , ๊ฒ€์ฆ(validation)๊ธฐ๊ฐ„์— ๋Œ€ํ•ด์„œ๋„ ์•ˆ์ •์ ์ธ ๋ชจ์˜์„ฑ๋Šฅ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค.

    ์˜์–ด์ดˆ๋ก

    A prediction of streamflow based on multi-objective function is presented to check the performance of Probability Distributed Model(PDM) in Miho stream basin, Chungcheongbuk-do, Korea. PDM is a lumped conceptual rainfall runoff model which has been widely used for flood prevention activities in UK Environmental Agency. The Monte Carlo Analysis Toolkit(MCAT) is a numerical analysis tools based on population sampling, which allows evaluation of performance, identifiability, regional sensitivity and etc. PDM is calibrated for five model parameters by using MCAT. The results show that the performance of model parameters(cmax and k(q)) indicates high identifiability and the others obtain equifinality. In addition, the multi-objective function is applied to PDM for seeking suitable model parameters. The solution of the multi-objective function consists of the Pareto solution accounting to various trade-offs between the different objective functions considering properties of hydrograph. The result indicated the performance of model and simulated hydrograph are acceptable in terms on Nash Sutcliffe Effciency*(=0.035), FSB(=0.161), and FDBH(=0.809) to calibration periods, validation periods as well.

    ์ฐธ๊ณ ์ž๋ฃŒ

    ยท ์—†์Œ
  • ์ž์ฃผ๋ฌป๋Š”์งˆ๋ๅฉ์˜ ๋‹ต๋ณ€์„ ํ™•์ธํ•ด ์ฃผ์„ธ์š”

    ํ•ดํ”ผ์บ ํผ์Šค FAQ ๋”๋ณด๊ธฐ

    ๊ผญ ์•Œ์•„์ฃผ์„ธ์š”

    • ์ž๋ฃŒ์˜ ์ •๋ณด ๋ฐ ๋‚ด์šฉ์˜ ์ง„์‹ค์„ฑ์— ๋Œ€ํ•˜์—ฌ ํ•ดํ”ผ์บ ํผ์Šค๋Š” ๋ณด์ฆํ•˜์ง€ ์•Š์œผ๋ฉฐ, ํ•ด๋‹น ์ •๋ณด ๋ฐ ๊ฒŒ์‹œ๋ฌผ ์ €์ž‘๊ถŒ๊ณผ ๊ธฐํƒ€ ๋ฒ•์  ์ฑ…์ž„์€ ์ž๋ฃŒ ๋“ฑ๋ก์ž์—๊ฒŒ ์žˆ์Šต๋‹ˆ๋‹ค.
      ์ž๋ฃŒ ๋ฐ ๊ฒŒ์‹œ๋ฌผ ๋‚ด์šฉ์˜ ๋ถˆ๋ฒ•์  ์ด์šฉ, ๋ฌด๋‹จ ์ „์žฌโˆ™๋ฐฐํฌ๋Š” ๊ธˆ์ง€๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.
      ์ €์ž‘๊ถŒ์นจํ•ด, ๋ช…์˜ˆํ›ผ์† ๋“ฑ ๋ถ„์Ÿ ์š”์†Œ ๋ฐœ๊ฒฌ ์‹œ ๊ณ ๊ฐ๋น„๋ฐ”์นด์ง€๋…ธ Viva์˜ ์ €์ž‘๊ถŒ์นจํ•ด ์‹ ๊ณ ๋น„๋ฐ”์นด์ง€๋…ธ Viva๋ฅผ ์ด์šฉํ•ด ์ฃผ์‹œ๊ธฐ ๋ฐ”๋ž๋‹ˆ๋‹ค.
    • ํ•ดํ”ผ์บ ํผ์Šค๋Š” ๊ตฌ๋งค์ž์™ฟ’ ํŒ๋งค์ž ๋ชจ๋‘๊ฐ€ ๋งŒ์กฑํ•˜๋Š” ์„œ๋น„์Šค๊ฐ€ ๋˜๋„๋ก ๋…ธ๋ ฅํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์•„๋ž˜์˜ 4๊ฐ€์ง€ ์ž๋ฃŒํ™˜๋ถˆ ์กฐ๊ฑด์„ ๊ผญ ํ™•์ธํ•ด์ฃผ์‹œ๊ธฐ ๋ฐ”๋ž๋‹ˆ๋‹ค.
      ํŒŒ์ผ์˜ค๋ฅ˜ ์ค‘๋ณต์ž๋ฃŒ ์ €์ž‘๊ถŒ ์—†์Œ ์„ค๋ช…๊ณผ ์‹ค์ œ ๋‚ด์šฉ ๋ถˆ์ผ์น˜
      ํŒŒ์ผ์˜ ๋‹ค์šด๋กœ๋“œ๊ฐ€ ์ œ๋Œ€๋กœ ๋˜์ง€ ์•Š๊ฑฐ๋‚˜ ํŒŒ์ผํ˜•์‹์— ๋งž๋Š” ํ”„๋กœ๊ทธ๋žจ์œผ๋กœ ์ •์ƒ ์ž‘๋™ํ•˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ ๋‹ค๋ฅธ ์ž๋ฃŒ์™ฟ’ 70% ์ด์ƒ ๋‚ด์šฉ์ด ์ผ์น˜ํ•˜๋Š” ๊ฒฝ์šฐ (์ค‘๋ณต์ž„์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋Š” ๊ทผ๊ฑฐ ํ•„์š”ํ•จ) ์ธํ„ฐ๋„ท์˜ ๋‹ค๋ฅธ ์‚ฌ์ดํŠธ, ์—ฐ๊ตฌ๊ธฐ๊ด€, ํ•™๊ป“, ์„œ์  ๋“ฑ์˜ ์ž๋ฃŒ๋ฅผ ๋„์šฉํ•œ ๊ฒฝ์šฐ ์ž๋ฃŒ์˜ ์„ค๋ช…๊ณผ ์‹ค์ œ ์ž๋ฃŒ์˜ ๋‚ด์šฉ์ด ์ผ์น˜ํ•˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ

โ€œํ•œ๊ตญ๋ฐฉ์žฌํ•™ํšŒ๋…ผ๋ๅฉ์ง‘โ€์˜ ๋‹ค๋ฅธ ๋…ผ๋ๅฉ๋„ ํ™•์ธํ•ด ๋ณด์„ธ์š”!

๋ฌธ์„œ ์ดˆ์•ˆ์„ ์ƒ์„ฑํ•ด์ฃผ๋Š” EasyAI
์•ˆ๋…•ํ•˜์„ธ์š”. ํ•ดํ”ผ์บ ํผ์Šค์˜ ๋ฐฉ๋Œ€ํ•œ ์ž๋ฃŒ ์ค‘์—์„œ ์„ ๋ณ„ํ•˜์—ฌ ๋‹น์‹ ๋งŒ์˜ ์ดˆ์•ˆ์„ ๋งŒ๋“ค์–ด์ฃผ๋Š” EasyAI ์ž…๋‹ˆ๋‹ค.
์ €๋Š” ์•„๋ž˜์™ฟ’ ๊ฐ™์ด ์ž‘์—…์„ ๋„์™ฟ’๋“œ๋ฆฝ๋‹ˆ๋‹ค.
- ์ฃผ์ œ๋งŒ ์ž…๋ ฅํ•˜๋ฉด ๋ชฉ์ฐจ๋ถ€ํ„ฐ ๋ณธ๋ฌธ๋‚ด์šฉ๊นŒ์ง€ ์ž๋™ ์ƒ์„ฑํ•ด ๋“œ๋ฆฝ๋‹ˆ๋‹ค.
- ์žฅ๋ฌธ์˜ ์ฝ˜ํ…์ธ ๋ฅผ ์‰ฝ๊ณ  ๋น ๋ฅด๊ฒŒ ์ž‘์„ฑํ•ด ๋“œ๋ฆฝ๋‹ˆ๋‹ค.
- ์Šคํ† ์–ด์—์„œ ๋ฌด๋ฃŒ ์บ์‹œ๋ฅผ ๊ณ„์ •๋ณ„๋กœ 1ํšŒ ๋ฐœ๊ธ‰ ๋ฐ›์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ง€๊ธˆ ๋ฐ”๋กœ ์ฒดํ—˜ํ•ด ๋ณด์„ธ์š”!
์ด๋Ÿฐ ์ฃผ์ œ๋“ค์„ ์ž…๋ ฅํ•ด ๋ณด์„ธ์š”.
- ์œ ์•„์—๊ฒŒ ์ ํ•ฉํ•œ ๋ฌธํ•™์ž‘ํ’ˆ์˜ ๊ธฐ์ค€๊ณผ ํŠน์„ฑ
- ํ•œ๊ตญ์ธ์˜ ๊ฐ€์น˜๊ด€ ์ค‘์—์„œ ์ •์‹ ์  ๊ฐ€์น˜๊ด€์„ ์ด๋ฃจ๋Š” ๊ฒƒ๋“ค์„ ๋ฌธํ™”์  ๋ฌธ๋ฒ•์œผ๋กœ ์ •๋ฆฌํ•˜๊ณ , ํ˜„๋Œ€ํ•œ๊ตญ์‚ฌํšŒ์—์„œ ์ผ์–ด๋‚˜๋Š” ์‚ฌ๊ฑด๊ณผ ์‚ฌ๊ณ ๋ฅผ ๋น„๊ตํ•˜์—ฌ ์ž์‹ ์˜ ์˜๊ฒฌ์œผ๋กœ ๊ธฐ์ˆ ํ•˜์„ธ์š”
- ์ž‘๋ณ„์ธ์‚ฌ ๋…ํ›„๊ฐ
ํ•ด์บ  AI ์ฑ—๋ด‡๊ณผ ๋Œ€ํ™”ํ•˜๊ธฐ
์ฑ—๋ด‡์œผ๋กœ ๊ฐ„ํŽธํ•˜๊ฒŒ ์ƒ๋‹ดํ•ด๋ณด์„ธ์š”.
2025๋…„ 06์›” 24์ผ ํ™”์š”์ผ
AI ์ฑ—๋ด‡
์•ˆ๋…•ํ•˜์„ธ์š”. ํ•ดํ”ผ์บ ํผ์Šค AI ์ฑ—๋ด‡์ž…๋‹ˆ๋‹ค. ๋ฌด์—‡์ด ๊ถ๊ธˆํ•˜์‹ ๊ฐ€์š”?
7:28 ์˜คํ›„