PARTNER
검증된 파트너 제휴사 자료

자연어 처리 딥러닝 모델 감정분석을 통한 감성콘텐츠 개발 연구 (A study on the development of emotional content through natural language processing deep learning model emotion analysis)

6 페이짿
기타파일
최초등록일 2025.04.16 최종젿작일 2023.07
6P 미보기
자연어 처리 딥러닝 모델 감정분석을 통한 감성콘텐츠 개발 연구
  • 미보기

    서정뵖

    · 발행기관 : 국제문화기술진흥원
    · 수록지 정보 : 문화기술의 융합 / 9권 / 4호 / 687 ~ 692페이짿
    · 저자명 : 이현수, 김민하, 서지원, 김정이

    초록

    본 연구는 자연어 처리 딥러닝 모델의 감정분석 정확성을 확인해보고 이를 감성 콘텐츠 개발에 활용하도록 제안한다. GPT-3모델의 개요를 살펴본 후 Aihub에서 제공하는 희곡 대사 데이터 약 6000개를 입력하고 ‘기쁨’, ‘슬픔’, ‘공포’, ‘분노’, ‘혐오’, ‘놀람’, ‘흥미’, ‘지루함’, ‘통증’ 총 9가지 감정 범주로 분류하였다. 이후 자연어 처리 모델 평가 방법인 정확도, 정밀도, 재현율, F1-score 의 평가지표를 활용하여 성능평가를 진행하였다. 감정분석 결과 91% 이상의 정확도를 보였으며 정밀도의 경우 ‘공포’,’통증’이 낮은 수치를 보였다. 재현도의 경우 ‘슬픔’, ‘분노’, ‘혐오’왿 같은 부정적인 감정에서 낮은 수치가 나타났고 특히 ‘혐오’의 경우 데이터 양의 부족으로 인해 오차가 나타난 것으로 확인된다. 기존 연구의 경우 감정분석을 긍정, 부정, 중립으로 나누는 극성분석에만 주로 사용되어 그 특성상 피드백 단계에서만 사용되는 한계가 있었다. 본 연구는 감정분석을 9가지 범주로 확장하여 기획 단계에서부터 이를 고려한 개발을 통해 게임, 전시, 공연, 관광, 디자인, 에듀테크, 미디어 등에서 감성 콘텐츠 개발에 활용될 수 있음을 제안한다. 후속 연구를 통하여 더욱 다양한 일상 대화들을 추가로 수집하여 감정분석을 진행한다면 더욱 정확한 결과를 얻을 수 있을 것으로 기대된다.

    영어초록

    We analyze the accuracy of emotion analysis of natural language processing deep learning model and propose to use it for emotional content development. After looking at the outline of the GPT-3 model, about 6,000 pieces of dialogue data provided by Aihub were input to 9 emotion categories: 'joy', 'sadness', 'fear', 'anger', 'disgust', and 'surprise'. ', 'interest', 'boredom', and 'pain'. Performance evaluation was conducted using the evaluation indices of accuracy, precision, recall, and F1-score, which are evaluation methods for natural language processing models. As a result of the emotion analysis, the accuracy was over 91%, and in the case of precision, 'fear' and 'pain' showed low values. In the case of reproducibility, a low value was shown in negative emotions, and in the case of 'disgust' in particular, an error appeared due to the lack of data. In the case of previous studies, emotion analysis was mainly used only for polarity analysis divided into positive, negative, and neutral, and there was a limitation in that it was used only in the feedback stage due to its nature. We expand emotion analysis into 9 categories and suggest its use in the development of emotional content considering it from the planning stage. It is expected that more accurate results can be obtained if emotion analysis is performed by additionally collecting more diverse daily conversations through follow-up research.

    참고자료

    · 없음
  • 자주묻는질의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객비바카지노 Viva의 저작권침해 신고비바카지노 Viva를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자왿 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료왿 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학껓, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“문화기술의 융합”의 다른 논도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래왿 같이 작업을 도왿드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 06월 09일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:09 오전