PARTNER
검증된 파트너 제휴사 자료

클러스터링 알고리즘기반의 COVID-19 상황인식 분석 (Analysis of COVID-19 Context-awareness based on Clustering Algorithm)

8 페이짿
기타파일
최초등록일 2025.04.26 최종젿작일 2022.05
8P 미보기
클러스터링 알고리즘기반의 COVID-19 상황인식 분석
  • 미보기

    서정뵖

    · 발행기관 : 한국정보통신학회
    · 수록지 정보 : 한국정보통신학회논지 / 26권 / 5호 / 755 ~ 762페이짿
    · 저자명 : 이강환

    초록

    본 논에서는 학습 예측이 가능한 군집적 알고리즘으로 COVID-19에서 상황인식정보인 질병의 속성정보왿 클러스터링를 이용한 군집적 알고리즘을 제안한다. 클러스터링 내에서 처리되는 군집 데이터는 신규 또는 새롭게 입력되는 정보가 상호관계를 예측하기 위해 분류 제공되는데, 이때 새롭게 입력되는 정보가 비교정보에서 오염된 정보로 처리되면 기존 분류된 군집으로부터 벗어나게 되어 군집성을 저하시키는 요인으로 작용하게 된다. 본 논에서는 COVID-19에서의 질병속성 정보내 K-means알고리즘을 이용함에 있어 이러한 문제를 해결하기 위해 질병 상호관계 정보 추출이 가능한 사용자 군집 분석 방식을 제안하고자 한다. 제안하는 알고리즘은 자율적인 사용자 군집 특징의 상호관계를 분석학습하고 이를 통하여 사용자 질병속성간에 따른 클러스터를 구성해 사용자의 누적 정보로부터 클러스터의 중심점을 제공하게 된다. 논에서 제안된 COVID-19의 다중질병 속성정보군집단위로 분류하고 학습하는 알고리즘은 적용한 모의실험 결과를 통해 사용자 관리 시스템의 예측정확도가 학습과정에서 향상됨을 보여주었다.

    영어초록

    This paper propose a clustered algorithm that possible more efficient COVID-19 disease learning prediction within clustering using context-aware attribute information. In typically, clustering of COVID-19 diseases provides to classify interrelationships within disease cluster information in the clustering process. The clustering data will be as a degrade factor if new or newly processing information during treated as contaminated factors in comparative interrelationships information. In this paper, we have shown the solving the problems and developed a clustering algorithm that can extracting disease correlation information in using K-means algorithm. According to their attributes from disease clusters using accumulated information and interrelationships clustering, the proposed algorithm analyzes the disease correlation clustering possible and centering points. The proposed algorithm showed improved adaptability to prediction accuracy of the classification management system in terms of learning as a group of multiple disease attribute information of COVID-19 through the applied simulation results.

    참고자료

    · 없음
  • 자주묻는질의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객비바카지노 Viva의 저작권침해 신고비바카지노 Viva를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자왿 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료왿 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학껓, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국정보통신학회논지”의 다른 논도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래왿 같이 작업을 도왿드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 06월 12일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:34 오후