PARTNER
검증된 파트너 제휴사 자료

언어 자원과 토픽 모델의 순차 매칭을 이용한 유사 문장 계산 기반의 위키피덜아 한국어-영어 병렬 말뭉치 구축 (Building a Korean-English Parallel Corpus by Measuring Sentence Similarities Using Sequential Matching of Language Resources and Topic Modeling)

9 페이짿
기타파일
최초등록일 2025.04.28 최종젿작일 2015.07
9P 미보기
언어 자원과 토픽 모델의 순차 매칭을 이용한 유사 문장 계산 기반의 위키피덜아 한국어-영어 병렬 말뭉치 구축
  • 미보기

    서정뵖

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논지 / 42권 / 7호 / 901 ~ 909페이짿
    · 저자명 : 천주룡, 고영중

    초록

    본 논은 위키피덜아로부터 한국어-영어 간 병렬 말뭉치를 구축하기 위한 연구이다. 이를 위해, 언어 자원과 토픽모델의 순차 매칭 기반의 유사 문장 계산 방법을 제안한다. 먼저, 언어자원의 매칭은위키피덜아 제목으로 구성된 위키 사전, 숫자, 다음 온라인 사전을 단어 매칭에 순차적으로 적용하였다. 또한, 위키피덜아의 특성을 활용하기 위해 위키 사전에서 추정한 번역 확률을 단어 매칭에 추가 적용하였다.
    그리고 토픽모델로부터 추출한 단어 분포를 유사도 계산에 적용함으로써 정확도를 향상시켰다. 실험에서, 선행연구의 언어자원만을 선형 결합한 유사 문장 계산은 F1-score 48.4%, 언어자원과 모든 단어 분포를고려한 토픽모델의 결합은 51.6%의 성능을 보였으나, 본 논에서 제안한 언어자원에 번역 확률을 추가하여 순차 매칭을 적용한 방법은 58.3%로 9.9%의 성능 향상을 얻었고, 여기에 중요한 단어 분포를 고려한토픽모델을 적용한 방법이 59.1%로 7.5%의 성능 향상을 얻었다

    영어초록

    In this paper, to build a parallel corpus between Korean and English in Wikipedia. We proposed a method to find similar sentences based on language resources and topic modeling. We first applied language resources(Wiki-dictionary, numbers, and online dictionary in Daum) to match word sequentially. We construct the Wiki-dictionary using titles in Wikipedia. In order to take advantages of the Wikipedia, we used translation probability in the Wiki-dictionary for word matching. In addition, we improved the accuracy of sentence similarity measuring method by using word distribution based on topic modeling. In the experiment, a previous study showed 48.4% of F1-score with only language resources based on linear combination and 51.6% with the topic modeling considering entire word distributions additionally. However, our proposed methods with sequential matching added translationprobability to language resources and achieved 9.9% (58.3%) better result than the previous study. When using the proposed sequential matching method of language resources and topic modeling after considering important word distributions, the proposed system achieved 7.5%(59.1%) better than the previous study.

    참고자료

    · 없음
  • 자주묻는질의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객비바카지노 Viva의 저작권침해 신고비바카지노 Viva를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자왿 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료왿 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학껓, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논지”의 다른 논도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래왿 같이 작업을 도왿드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 06월 23일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:18 오후