PARTNER
검증된 파트너 제휴사 자료

배깅 기반의 부트스트래핑을 이용한 개체명 인식 학습 기법 (A Named-Entity Recognition Training Method Using Bagging-Based Bootstrapping)

6 페이짿
기타파일
최초등록일 2025.04.30 최종젿작일 2018.08
6P 미보기
배깅 기반의 부트스트래핑을 이용한 개체명 인식 학습 기법
  • 미보기

    서정뵖

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논지 / 45권 / 8호 / 825 ~ 830페이짿
    · 저자명 : 정유진, 김주애, 고영중, 서정연

    초록

    기존 개체명 인식 연구는 지도학습에 기반한 개체명인식이 주를 이루고 있다. 지도학습에 기반한 개체명인식이 좋은 성능을 보이고 있지만, 대량의 정답 말뭉치를 구축하기 위해 많은 시간과 비용을 필요로 한다는 문제점이 있다. 본 논에서는 이러한 문제를 해결하기 위해, 대량의 말뭉치에 수동으로 정답을 부여하기 위한 노력 없이, 개체명 인식 모델이 자동 생성한 정답을 학습에 사용하는 개체명 인식 모델 학습 기법을 제안한다. 제안 방법은 소량의 개체명 정답 말뭉치만으로 대량의 개체명 정답을 자동 생성하여 학습에 사용하므로, 대량의 정답 말뭉치를 생성하기 위해 필요한 시간과 비용을 크게 절감시킨다.
    추가적으로 배깅 기법을 사용하여 자동 생성한 정답들 중 오류를 제거한다. 부트스트래핑 기법과 배깅 기법을 추가하였을때, F1 점수 최고 70.67%를 기록하였다. 비교를 위한 기본 CRF 개체명 인식 모델의 F1 점수는 65.59%를 기록하였다.

    영어초록

    Most previous named-entity(NE) recognition studies have been based on supervised learning methods. Although supervised learning-based NE recognition has performed well, it requires a lot of time and cost to construct a large labeled corpus. In this paper, we propose an NE recognition training method that uses an automatically generated labeled corpus to solve this problem. Since the proposed method uses a large machine-labeled corpus, it can greatly reduce the time and cost needed to generate a labeled corpus manually. In addition, a bagging-based bootstrapping technique is applied to our method in order to correct errors from the machine-labeled data. As a result, experimental results show that the proposed method achieves the highest F1 score of 70.76% by adding the bagging-based bootstrapping technique, which is 5.17%p higher than that of the baseline system.

    참고자료

    · 없음
  • 자주묻는질의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객비바카지노 Viva의 저작권침해 신고비바카지노 Viva를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자왿 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료왿 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학껓, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논지”의 다른 논도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래왿 같이 작업을 도왿드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 06월 21일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:33 오후