PARTNER
검증된 파트너 제휴사 자료

RNN을 이용한 제2형 당뇨병 예측모델 개발 (Development of T2DM Prediction Model Using RNN)

한국학술짿에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논과 학술지 정보를 만나보세요.
7 페이짿
기타파일
최초등록일 2025.05.11 최종젿작일 2019.08
7P 미보기
RNN을 이용한 제2형 당뇨병 예측모델 개발
  • 미보기

    서정뵖

    · 발행기관 : 한국디지털정책학회
    · 수록지 정보 : 디지털융복합연구 / 17권 / 8호 / 249 ~ 255페이짿
    · 저자명 : 장진수, 이민준, 이태로

    초록

    제2형 당뇨병은 고혈당이 특징인 대사성 분비 장애로 여러 합병증을 야기하는 질병이며, 장기적인 치료가 필요하기 때문에 매년 많은 의료비를 지출한다. 이를 해결하기 위해 많은 연구들이 있어왔지만, 기존의 연구들은 한 시점에서의 데이터를 학습시켜 예측함으로써 정확도가 높지 않았다. 그래서 본 연구는 제2형 당뇨병 발생 예측에 대한 정확도를 높이기 위하여 RNN을 이용한 모델을 제안하였다. 본 모델을 개발하기 위해 한국인유전체역학조사 지역사회 코호트(안산·안성) 데이터를 이용하였으며, 시간의 흐름에 따른 데이터들을 모두 학습시켜 당뇨병 발생 예측모델을 만들었다. 예측 모델의 성능을 검증하기 위해 기존의 기계 학습 방법인 LR, k-NN, SVM과 정확도를 비교하였다. 비교한 결과 제안한 예측모델의 accuracy는 0.92, AUC는 0.92로 다른 기계 학습 방법보다 높은 정확도를 보였다. 따라서 본 연구에서 제안한 제2형 당뇨병 발생 예측 모델을 활용하여 발병을 조기 예측함으로써 생활습관 개선 및 혈당조절을 통해 당뇨병 발병을 예방하고 늦출 수 있을 것이다.

    영어초록

    Type 2 diabetes mellitus(T2DM) is included in metabolic disorders characterized by hyperglycemia, which causes many complications, and requires long-term treatment resulting in massive medical expenses each year. There have been many studies to solve this problem, but the existing studies have not been accurate by learning and predicting the data at specific time point. Thus, this study proposed a model using RNN to increase the accuracy of prediction of T2DM. This work propose a T2DM prediction model based on Korean Genome and Epidemiology study(Ansan, Anseong Korea). We trained all of the data over time to create prediction model of diabetes. To verify the results of the prediction model, we compared the accuracy with the existing machine learning methods, LR, k-NN, and SVM. Proposed prediction model accuracy was 0.92 and the AUC was 0.92, which were higher than the other. Therefore predicting the onset of T2DM by using the proposed diabetes prediction model in this study, it could lead to healthier lifestyle and hyperglycemic control resulting in lower risk of diabetes by alerted diabetes occurrence.

    참고자료

    · 없음
  • 자주묻는질의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객비바카지노 Viva의 저작권침해 신고비바카지노 Viva를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자왿 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료왿 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학껓, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“덜짿털융복합연구”의 다른 논도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래왿 같이 작업을 도왿드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 06월 08일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:20 오전