PARTNER
검증된 파트너 제휴사 자료

주변 전경 픽셀 전파 알고리즘 기반 실시간 이동 객체 검출 (A Real-time Motion Object Detection based on Neighbor Foreground Pixel Propagation Algorithm)

8 페이짿
기타파일
최초등록일 2025.06.01 최종젿작일 2010.01
8P 미보기
주변 전경 픽셀 전파 알고리즘 기반 실시간 이동 객체 검출
  • 미보기

    서정뵖

    · 발행기관 : 대한전자공학회
    · 수록지 정보 : 전자공학회논지 - SP / 47권 / 1호 / 9 ~ 16페이짿
    · 저자명 : 응웬탄빈, 정선태

    초록

    이동 객체 검출은 입력 영상에서 배경과 다른 전경 객체를 찾는 것을 말하는 것으로 지능 영상 감시, HCI, 객체 기반 영상 압축 등의 여러 영상 처리 응용 분야에서 필요한 과정이다. 기존의 이동 객체 검출 알고리즘은 상당한 계산량을 요구하여 다채널 영상 감시 응용, 또는 임베디드 시스템에서의 단일 채널의 실시간 응용에 사용하는 데 애로가 많다. 보다 정확한 이동 객체 검출을 위하여 필요한 과정인 전경 마스크 정정은 보통 열림, 닫힘 등의 모폴로지 연산을 통해 수행된다. 모폴로지 연산은 계산량이 적지 않고 게다가 프로세싱 방법이 달라 이동 객체 검출의 다음 단계인 연결 요소 레이블링 루틴과 동시에 처리되기 어렵다. 본 논에서는 먼저 모폴로지 연산과는 달리 연결 요소 레이블링 루틴에서 사용되는 주변 픽셀 점검 과정을 활용한 전경 마스크 정정 알고리즘인 “주변 전경 픽셀 전파”을 고안하고, 이를 활용하여 전경 마스크 정정과 연결 요소 레이블링이 동시에 수행될 수 있는 이동 객체 검출 방법을 제안한다. 실험을 통해, 제안된 이동 객체 검출 방법이 기존의 모폴로지 연산을 사용한 방법 보다 정확하게 이동 객체를 검출하였으며, 대상 실험 영상 프레임 및 비디오에 대해서는 최소 4배 이상 신속하게 처리됨을 확인하였다.

    영어초록

    Moving object detection is to detect foreground object different from background scene in a new incoming image frame and is an essential ingredient process in some image processing applications such as intelligent visual surveillance, HCI, object-based video compression and etc. Most of previous object detection algorithms are still computationally heavy so that it is difficult to develop real-time multi-channel moving object detection in a workstation or even one-channel real-time moving object detection in an embedded system using them. Foreground mask correction necessary for a more precise object detection is usually accomplished using morphological operations like opening and closing. Morphological operations are not computationally cheap and moreover, they are difficult to be rendered to run simultaneously with the subsequent connected component labeling routine since they need quite different type of processing from what the connected component labeling does. In this paper, we first devise a fast and precise foreground mask correction algorithm, “Neighbor Foreground Pixel Propagation (NFPP)” which utilizes neighbor pixel checking employed in the connected component labeling. Next, we propose a novel moving object detection method based on the devised foreground mask correction algorithm, NFPP where the connected component labeling routine can be executed simultaneously with the foreground mask correction. Through experiments, it is verified that the proposed moving object detection method shows more precise object detection and more than 4 times faster processing speed for a image frame and videos in the given the experiments than the previous moving object detection method using morphological operations.

    참고자료

    · 없음
  • 자주묻는질의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객비바카지노 Viva의 저작권침해 신고비바카지노 Viva를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자왿 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료왿 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학껓, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“전자공학회논지 - SP”의 다른 논도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래왿 같이 작업을 도왿드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 07월 09일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:24 오후