· Kim D.H. (2014). The understanding of the policies of ‘creative economy’. Seoul: Communication Books
· Kim, D. Y., & Kim, Y. B. (2019). The essential ICTs of the fourth industrial revolution: Big data, AI, Cloud technology. Korea Information Processing Society Review, 26(1), 7-17.
· Bae, D. M., Park H. S., & Oh K. W. (2013). Big data trends and policy implications. Information and communication broadcasting policy (555), 37-74.
· Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
· Lauzon, F. Q. (2012, July). An introduction to deep learning. In 2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA) (pp. 1438-1439 IEEE.
· Vincent J. (2018). Why we need a better definition of ‘deepfake’. The Verge. https://www.theverge.com/2018/5/22/17380306/deepfake-definition-ai-manipulation-fake-news
· Gehrmann S, Strobelt H, Rush A. GLTR: Statistical Detection and Visualization of Generated Text. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations. Association for Computational Linguistics; 2019. p. 111–116.
· Tolosana, R., Vera-Rodriguez, R., Fierrez, J., Morales, A., & Ortega-Garcia, J. (2020). Deepfakes and beyond: A survey of face manipulation and fake detection. Information Fusion, 64, 131-148.
· Lyu, S. (2020, July). Deepfake detection: Current challenges and next steps. In 2020 IEEE International Conference on Multimedia & Expo Workshops (ICMEW) (pp. 1-6). IEEE.
· Chen, T., Kumar, A., Nagarsheth, P., Sivaraman, G., & Khoury, E. (2020, November). Generalization of audio deepfake detection. In Proc. Odyssey 2020 The Speaker and Language Recognition Workshop (pp. 132-137).
· Wolff, M., & Wolff, S. (2020). Attacking neural text detectors. arXiv preprint arXiv:2002.11768.
· Ippolito, D., Duckworth, D., Callison-Burch, C., & Eck, D. (2019). Automatic detection of generated text is easiest when humans are fooled. arXiv preprint arXiv:1911.00650.
· Cruse, E. (2006). Using educational video in the classroom: Theory, research and practice. Library Video Company, 12(4), 56-80.
· Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C., & Nießner, M. (2016). Face2face: Real-time face capture and reenactment of rgb videos. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2387-2395).
· Chesney, B., & Citron, D. (2019). Deep fakes: A looming challenge for privacy, democracy, and national security. Calif. L. Rev., 107, 1753.
· Ascott, T. (2020). Microfake: How small-scale deepfakes can undermine society. Journal of Digital Media & Policy, 11(2), 215-222.
· Sima S. (2018). Lyrebird Helps ALS Ice Bucket Challenge Co-Founder Pat Quinn Get His Voice Back. Huffington Post. https://www.huffpost.com/archive/ca/entry/lyrebird-helps-als-ice-bucket-challenge-co-founder-pat-quinn-get-his-voice-back_a_23411403
· Steve Lohr (2018). It’s True: False News Spreads Faster and Wider. And Humans Are to Blame. New York Times. https://www.nytimes.com/2018/03/08/technology/twitter-fake-news-research.html
· Aurelien Breeden et al. (2017). Macron Campaign Says It Was Target of ‘Massive’ Hacking Attack. New York Times. https://www.nytimes.com/2017/05/05/world/europe/france-macron-hacking.html
· Zick, T. (2012). Falsely Shouting Fire in a Global Theater: Emerging Complexities of Transborder Expression. Vand. L. Rev., 65, 123.