· [1] Suo, C. Y. a. Z. Hydrogel ionotronics. Nat. Rev. Mater. 3, 125−142 (2018).
· [2] Kim, H. J., Chen, B., Suo, Z. & Hayward, R. C. Ionoelastomer junctions between polymer networks of fixed anions and cations. Science 367, 773−776 (2020).
· [3] Zhang, W. et al. Kinetic pathways of ionic transport in fast-charging lithium titanate. Science 367, 1030−1034 (2020).
· [4] Rustomji, C. S. et al. Liquefied gas electrolytes for electrochemical energy storage devices. Science 356, aal4263(2017).
· [5] Zhao, Q. et al. Archer. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5, 229-252(2020).
· [6] Fang, C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 572, 511−515 (2019).
· [7] Zheng, J. et al. Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645−648 (2019).
· [8] Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 16141 (2016).
· [9] Winter, M., Barnett, B. & Xu, K. Before Li ion batteries. Chem. Rev. 118, 11433−11456 (2018).
· [10] An, Y. et al. Progress in solid polymer electrolytes for Lithium-ion batteries and beyond. Small 18, 2103617 (2022).
· [11] Zhou, T. et al. Porous polyelectrolyte frameworks: synthesis, post-ionization and advanced applications. Chem. Soc. Rev. 51, 237−267 (2022).
· [12] Luo, D. et al. Porous organic polymers for Li-chemistrybased batteries: functionalities and characterization studies. Chem. Soc. Rev. 51, 2917−2938 (2022).
· [13] Waller, P. J., Gándara, F. & Yaghi, O. M. Chemistry of covalent organic frameworks. Acc. Chem. Res. 48, 3053−3063 (2015).
· [14] Li, J. et al. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem. Soc.Rev. 49, 3565−3604 (2020).
· [15] Zhao, X., Pachfule, P. & Thomas, A. Covalent organic frameworks (COFs) for electrochemical applications. Chem. Soc. Rev. 50, 6871−6913 (2021).
· [16] Zhu, D. et al. Covalent organic frameworks for batteries. Adv. Funct. Mater. 31, 2100505 (2021).
· [17] Zeng, Z. et al. Recent progress in covalent organic framework thin films: fabrications, applications and perspectives. Chem. Soc. Rev. 48, 488−516 (2019).
· [18] Wang, S. et al. Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries. J. Am. Chem. Soc. 139, 4258−4261 (2017).
· [19] Vitaku, E. et al. Phenazine-based covalent organic framework cathode materials with high energy and power densities. J. Am. Chem. Soc. 142, 16−20 (2019).
· [20] Yao, L. et al. Highly crystalline polyimide covalent organic framework as dual-active-center cathode for highperformance Lithium-ion batteries. J. Am. Chem. Soc. 144, 23534−23542 (2022).
· [21] Li, Z. et al. Olefin‐linked covalent organic frameworks with electronegative channels as cationic highways for sustainable lithium metal battery anodes. Angew. Chem. Int. Ed. 62, e202307459 (2023).
· [22] Gong, W. et al. covalent organic framework with multi‐cationic nolecular chains for gate mechanism controlled superionic conduction in all‐solid‐state batteries. Angew. Chem. Int. Ed. 62, e202302505 (2023).
· [23] Guo, D. et al. Foldable solid‐state batteries enabled by electrolyte mediation in covalent organic frameworks. Adv. Mater. 34, 2201410 (2022).
· [24] Jeong, K. et al. Solvent-free, single lithium-ion conducting covalent organic frameworks. J. Am. Chem. Soc. 141, 5880−5885 (2019).
· [25] Li, X. et al. Solution-processable covalent organic framework electrolytes for all-solid-state Li–organic batteries. ACS Energy Lett. 5, 3498−3506 (2020).
· [26] Zhao, G. et al. COF‐based single Li+solid electrolyte accelerates the ion diffusion and restrains dendrite growth in quasi‐solid‐state organic batteries. Carbon Energy 5, e248 (2023).
· [27] Li, X. & Loh, K. P. Recent progress in covalent organic frameworks as solid-state ion conductors. ACS Mater. Lett. 1,327−335 (2019).
· [28] Yuan, S. et al. Covalent organic frameworks for membrane separation. Chem. Soc. Rev. 48, 2665−2681 (2019).
· [29] Wang, H. et al. Recent progress in covalent organic framework thin films: fabrications, applications and perspectives. Chem. Soc. Rev. 48, 488−516 (2019).
· [30] Sasmal, H. S. et al. Superprotonic conductivity in flexible porous covalent organic framework membranes. Angew. Chem. Int. Ed. 57, 10894−10898 (2018).
· [31] Niu, C., Luo, W., Dai, C., Yu, C. & Xu, Y. High‐voltage‐tolerant covalent organic framework electrolyte with holistically oriented channels for solid‐state lithium metal batteries with nickel‐rich cathodes. Angew. Chem. Int. Ed. 60, 24915−24923 (2021).
· [32] Bai, S. et al. Permselective metal–organic framework gel membrane enables long-life cycling of rechargeable organic batteries. Nat. Nanotechn. 16, 77−84 (2021).
· [33] Bouchet, R. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452−457 (2013).
· [34] Jeong, K., Park, S. & Lee, S.-Y. Revisiting polymeric single lithium-ion conductors as an organic route for all-solidstate lithium ion and metal batteries. J. Mater. Chem. A 7, 1917−1935 (2019).
· [35] Oh, K.-S. et al. Electrostatic covalent organic frameworks as on-demand molecular traps for high-energy Li metal battery electrodes. ACS Energy Lett. 8, 2463−2474 (2023).
· [36] Oh, K. S. et al. Single‐ion conducting soft electrolytes for semi‐solid Lithium metal batteries enabling cell fabrication and operation under ambient conditions. Adv. Energy Mater. 11, 2101813 (2021).
· [37] Kim, D. H. et al. Thin and flexible solid electrolyte membranes with ultrahigh thermal stability derived from solution-processable Li argyrodites for all-solid-state Li-ion batteries. ACS Energy Lett. 5, 718−727 (2020).
· [38] Chen, H. et al. Cationic covalent organic framework nanosheets for fast Li-ion conduction. J. Am. Chem. Soc. 140, 896−899 (2018).
· [39] Cao, Y. et al. Covalent organic framework for rechargeable batteries: mechanisms and properties of ionic conduction. Adv. Energy Mater. 12, 2200057 (2022).
· [40] Xu, Q., Tao, S., Jiang, Q. & Jiang, D. Designing covalent organic frameworks with a tailored ionic interface for ion transport across one‐dimensional channels. Angew. Chem. Int. Ed. 59, 4557−4563 (2020).
· [41] Zhang, G. et al. Accumulation of glassy poly (ethylene oxide) anchored in a covalent organic framework as a solidstate Li+electrolyte. J. Am. Chem. Soc. 141, 1227−1234 (2018).
· [42] Guo, Z. et al. Fast ion transport pathway provided by polyethylene glycol confined in covalent organic frameworks. J. Am. Chem. Soc. 141, 1923−1927 (2019).
· [43] Zhang, Z. et al. Enhanced high-temperature performances of LiFePO4 cathode with polyacrylic acid as binder. ECS Electrochem. Lett. 1, A74 (2012).